SPAIL

System Performance Analytics & Intelligence Lab
浙江大学软件学院

Data-Driven Performance · Hardware-Aware Intelligence


→SPAIL 项目仓库 →Director Homepage →Youtune.tech

关于我们

SPAIL是浙江大学软件学院的研究实验室,专注于解决云、AI和大数据领域的真实性能瓶颈。实验室由具备顶尖学术背景和丰富产业经验的资深工程师团队领导,与多家科技巨头保持深度产学研合作。

核心优势:

  • 产业级导师团队:导师均来自Intel、阿里巴巴、腾讯等头部企业,拥有双11、腾讯会议等大规模系统优化实战经验
  • 真实场景研究:合作项目直接来自华为、字节跳动、快手等行业伙伴
  • 充足资源保障:充足的科研经费支持,提供实习、交流和职业发展机遇

团队

实验室主任

周经森 (Kingsum Chow)
浙江省顶尖人才,前阿里巴巴首席科学家、Intel高级首席工程师。Java全球标准委员会JCP-EC首位中国成员,拥有中美专利72+项,发表论文135+篇。 GitHub 主页 | 浙江大学个人主页

核心研究员

  • 吴克强:前Intel/Oracle,芯片缓存设计与AI性能优化专家,10+项美国专利
  • 赵海亮:浙大”百人计划”研究员,服务计算与调度优化方向,主持国自然青年项目
  • 常志豪:浙大特聘研究员,软硬件协同优化专家,前阿里巴巴技术专家
  • 张金山:浙大特聘研究员,CCF专业组委员,IJCAI/EC等顶会论文40+篇
  • 智晨:浙大特聘副研究员,智能化软件工程方向,主持国自然青年基金
  • 温利龙:浙大计算机博士,系统性能优化与多模态大模型方向
  • 黄益聪:高级工程师,前Intel/阿里巴巴/美柚科技技术VP,15项中国专利+3项美国专利
  • 李成栋:高级工程师,前腾讯T11/阿里巴巴专家,主导腾讯会议、TDSQL等核心产品性能优化

研究领域

  1. PIPA 统一性能分析平台 GitHub仓库
    • 可观测工具:多源性能数据采集(perf/sar/eBPF等)、跨层深度观测(系统/代码/指令级)、数据质控标准化(验证/清洗/标签)、可视化报告输出
    • 软硬件协同优化:跨架构适配(x86_64/ARM/RISC-V)、全栈跨层瓶颈归因、软硬件资源与执行联动分析、针对性优化建议
  2. 软硬件协同优化
    • 微架构分析与性能/功耗优化
    • 全栈软件优化(应用/中间件/编译器)
    • Java应用与JVM动态调优
  3. AI系统优化
    • 基于大模型的自动优化
    • 深度学习模型瓶颈分析与加速
  4. 基准测试与表征
    • 行业基准性能提升
    • 工作负载特征分析
    • RISC-V/Arm生态性能优化

合作企业

阿里巴巴、华为、腾讯、字节跳动、快手、Ampere Computing、Intel、Oracle、Microsoft

代表性项目:

  • 阿里巴巴集群CPU利用率优化与修正算法
  • 华为鸿蒙系统性能优化
  • 腾讯会议大规模并发性能提升(单房间3倍扩容)
  • 字节跳动/快手分布式系统性能分析

开源资源


加入我们

招生方向:硕士/博士研究生、研究助理、博士后
要求:计算机、软件工程、电子信息等相关专业,对系统优化有浓厚兴趣
优势:接触真实工业数据、参与顶级会议论文、推荐大厂实习/就业机会

申请方式:发送简历至 ksumchow@outlook.com


联系方式

  • 地址:浙江省宁波市鄞州区浙江大学软件学院
  • 邮箱:ksumchow@outlook.com
  • GitHub: github.com/ZJU-SPAIL

KinsumChow


Kingsum Chow (周经森)

Researcher, Lab Director, & Enterprise CEO

"Software Hardware Co-optimization & System Performance Analytics"


→SPAIL Lab →My ZJU HomePage →Youtune.tech

1️⃣ Biography & Impact

🎓 Current Role & Education

  • Researcher / Ph.D. Supervisor – School of Software Technology, Zhejiang University
  • Director – SPAIL (System Performance Analytics and Intelligence Lab)
  • Ph.D. – Computer Science & Engineering, University of Washington, 1996
    Advisor: ACM/IEEE Fellow David Notkin

💼 Industry Career

  • Chief Scientist – Alibaba (2016–2022)
  • Principal Engineer – Intel Corporation, USA (1996–2016)

🚀 Technical & Economic Impact

  • Focus: Software-Hardware Co-optimization (SHCO), Performance Analytics & Intelligence
  • Accumulated industry savings: > 💰USD 20 billion
  • Scale: Optimized tens of millions of servers worldwide, including Double-11 peak workloads

🌐 Global Authority

  • Java Standards: First and only Chinese member, JCP-EC (2018–2022)
  • Publications: 135+ papers; 74 patents (24 granted US patents)

2️⃣ Research & Subject

🔗SPAIL Lab (System Performance Analytics and Intelligence Lab)

Leading a team of industry veterans and top researchers to solve bottlenecks in Cloud, AI, and Big Data.

🔗PIPA - SPAIL

Platform for Integrated Performance Analytics A unified framework designed to describe, analyze, and optimize system performance across heterogeneous architectures.


3️⃣ Projects & Collabrations

Dr. Chow has led large-scale, high-impact collaborations with global technology leaders, demonstrating expertise in full-stack system optimization. The projects he has spearheaded accumulated an astonishing total budget exceeding 💰160 million CNY (over 💰20 million USD).

  • Strategic Ecosystem Partnerships: Collaborated extensively with industry giants including Amazon, Ampere, Arm, Google, Huawei, Microsoft, Tencent, and Meta.
  • Project Apollo (Intel & Oracle, 2014–2016): Led the collaboration for the 2015 Oracle Cloud launch, which was announced by the CEOs of both companies.
  • Alibaba SPEED (2018–2020): Led the development of the “System Performance Estimation, Evaluation and Decision” platform for Alibaba.
  • Project Meta (Intel & Meta, 2022–2023): A major leadership initiative with a vast budget focused on advanced system research.
  • Huawei Software Performance Optimization (2024–2026): Leading a multi-year project dedicated to optimizing Huawei’s core software performance.
  • Heterogeneous Serverless Optimization (2024–2026): Focused on performance modeling and optimization for serverless, GPU throughput, and microservice environments, collaborating with Alibaba, Kuaishou, ByteDance, and Ampere.
  • Alibaba Dragonwell JDK (2018–2019): Spearheaded the development and optimization of Alibaba’s critical Java Development Kit.
  • Oracle Exalytics Memory Optimization (2013–2014): Led performance optimization for Oracle’s in-memory analytics system.
  • Intel P6 Microcode Simulator (1993–1994): Early high-impact work involving the development of a performance simulator for Intel’s P6 microcode.

4️⃣ Keynote Presentations

I have delivered keynotes at major industry conferences, including 4 appearances at JavaOne, the world’s highest-rated Java conference.

  • CMG IMPACT 2022: Propelling Java at Alibaba Scale (Jan 2022)
  • QCon Shanghai 2021: Toward Software Performance Evaluation at Scale: A Journey (Link) (Oct 2021)
  • Arm DevSummit: Keynote Presentation (Nov 2020 & Oct 2020)
  • QCon Beijing: Keynote (2017)
  • JavaOne (San Francisco): Keynote Speaker (2017, 2011, 2008, 2007)
  • Kingsum Chow delivering the Keynote speech at JavaOne in 2017.
    JavaOne Keynote (2017)
    Kingsum Chow delivering the Keynote speech at QCon Shanghai in 2021.
    QCon Shanghai Keynote (2021)

5️⃣ Patents

🇺🇸 Granted US Patents(24)
🇺🇸 Published US Applications(22)
🇨🇳 中国专利(已公开/授权)
🇨🇳 中国专利申请(已受理 / 实审中)
  • 一种面向混合架构的CPU利用率的计算系统和方法. 发明人:周经森、江新宇、冯雨森、管江涛. 状态:实审中. 申请日:2023.11
  • 一种基于机器学习的数据库性能预测方法. 发明人:周经森、孙志超. 状态:实审中. 申请日:2024.11.20
  • 一种面向电商秒杀应用的基准测试方法. 发明人:周经森、陈奕坤、杨孟铎、常亚辰、江新宇、章超. 状态:将要授权. 申请日:2024.10.31;预计授权日:2025.10.20
  • 一种基于类别感知和特征解耦的分布外检测方法. 发明人:周经森、常亚辰、凌志威、赵海亮. 状态:实审中. 申请日:2025.01.23
  • 一种云服务器异常检测方法. 发明人:周经森、梁冬晴. 状态:实审中. 申请日:2025.01.22
  • 一种自动提取并行应用程序热点代码的方法. 发明人:周经森、章超. 状态:将要授权. 申请日:2024.12.09;预计授权日:2025.09.26
  • 一种多个核心组内共享预取器的预取配置优化方法. 发明人:周经森、常亚辰. 状态:将要授权. 申请日:2024.12.10;预计授权日:2025.09.25
  • 一种面向数据中心集群的多重连接聚类方法. 发明人:周经森、冯雨森. 状态:将要授权. 申请日:2024.12.06;预计授权日:2025.09.22
  • 一种CPU性能采样工具的运行开销的预测方法. 发明人:周经森、汤煜. 状态:受理. 申请日:2025.07.08
  • 一种基于分布外检测的联邦学习方法. 发明人:周经森、章超、赵海亮、凌志威. 状态:受理. 申请日:2025.04.01
  • 一种计算机处理器性能监测单元的硬件事件组调度方法. 发明人:周经森、江新宇. 状态:受理. 申请日:2025.07.08
  • 一种基于LLM聚类和多次召回的文档检索方法. 发明人:周经森、管江涛. 状态:受理. 申请日:2025.10.11
🌐 International Applications(5)

📮 Contact